

headerparser — argparse for mail-style headers

	Input Format

	Parser

	Scanner
	Scanner Options

	Utilities

	Exceptions
	Parser Errors

	Scanner Errors

headerparser parses key-value pairs in the style of RFC 822 [https://tools.ietf.org/html/rfc822.html] (e-mail)
headers and converts them into case-insensitive dictionaries with the trailing
message body (if any) attached. Fields can be converted to other types, marked
required, or given default values using an API based on the standard library’s
argparse [https://docs.python.org/3/library/argparse.html#module-argparse] module. (Everyone loves argparse [https://docs.python.org/3/library/argparse.html#module-argparse], right?) Low-level functions
for just scanning header fields (breaking them into sequences of key-value
pairs without any further processing) are also included.

Installation

Just use pip [https://pip.pypa.io] (You have pip, right?) to install
headerparser and its dependencies:

pip install headerparser

Examples

Define a parser:

>>> import headerparser
>>> parser = headerparser.HeaderParser()
>>> parser.add_field('Name', required=True)
>>> parser.add_field('Type', choices=['example', 'demonstration', 'prototype'], default='example')
>>> parser.add_field('Public', type=headerparser.BOOL, default=False)
>>> parser.add_field('Tag', multiple=True)
>>> parser.add_field('Data')

Parse some headers and inspect the results:

>>> msg = parser.parse_string('''\
... Name: Sample Input
... Public: yes
... tag: doctest, examples,
... whatever
... TAG: README
...
... Wait, why I am using a body instead of the "Data" field?
... ''')
>>> sorted(msg.keys())
['Name', 'Public', 'Tag', 'Type']
>>> msg['Name']
'Sample Input'
>>> msg['Public']
True
>>> msg['Tag']
['doctest, examples,\n whatever', 'README']
>>> msg['TYPE']
'example'
>>> msg['Data']
Traceback (most recent call last):
 ...
KeyError: 'data'
>>> msg.body
'Wait, why I am using a body instead of the "Data" field?\n'

Fail to parse headers that don’t meet your requirements:

>>> parser.parse_string('Type: demonstration')
Traceback (most recent call last):
 ...
headerparser.errors.MissingFieldError: Required header field 'Name' is not present
>>> parser.parse_string('Name: Bad type\nType: other')
Traceback (most recent call last):
 ...
headerparser.errors.InvalidChoiceError: 'other' is not a valid choice for 'Type'
>>> parser.parse_string('Name: unknown field\nField: Value')
Traceback (most recent call last):
 ...
headerparser.errors.UnknownFieldError: Unknown header field 'Field'

Allow fields you didn’t even think of:

>>> parser.add_additional()
>>> msg = parser.parse_string('Name: unknown field\nField: Value')
>>> msg['Field']
'Value'

Just split some headers into names & values and worry about validity later:

>>> for field in headerparser.scan_string('''\
... Name: Scanner Sample
... Unknown headers: no problem
... Unparsed-Boolean: yes
... CaSe-SeNsItIvE-rEsUlTs: true
... Whitespace around colons:optional
... Whitespace around colons : I already said it's optional.
... That means you have the _option_ to use as much as you want!
...
... And there's a body, too, I guess.
... '''): print(field)
('Name', 'Scanner Sample')
('Unknown headers', 'no problem')
('Unparsed-Boolean', 'yes')
('CaSe-SeNsItIvE-rEsUlTs', 'true')
('Whitespace around colons', 'optional')
('Whitespace around colons', "I already said it's optional.\n That means you have the _option_ to use as much as you want!")
(None, "And there's a body, too, I guess.\n")

Indices and tables

	Index

	Search Page

Input Format

headerparser accepts a syntax that is intended to be a simplified superset of
the Internet Message (e-mail) Format specified in RFC 822 [https://tools.ietf.org/html/rfc822.html], RFC 2822 [https://tools.ietf.org/html/rfc2822.html], and
RFC 5322 [https://tools.ietf.org/html/rfc5322.html]. Specifically:

	Everything in the input up to (but not including) the first blank line (i.e.,
a line containing only a line ending) constitutes the header section.
Everything after the first blank line is a free-form message body. If
there are no blank lines, the entire input is used as the header section, and
there is no body.

	The header section is composed of zero or more header fields. A
header field is composed of one or more lines, with all lines after the first
beginning with a space or tab. Additionally, the first line must contain a
colon (optionally surrounded by whitespace); everything before the colon is
the header field name, while everything after (including subsequent
lines) is the header field value.

Note

Name-value separators other than a colon can be used by setting the
separator_regex scanner option.

Note

This format only recognizes CR, LF, and CR LF sequences as line endings.

An example:

Key: Value
Foo: Bar
Bar:Whitespace around the colon is optional
Baz : Very optional
Long-Field: This field has a very long value, so I'm going to split it
 across multiple lines.

 The above line is all whitespace. This counts as line folding, and so
 we're still in the "Long Field" value, but the RFCs consider such lines
 obsolete, so you should avoid using them.
 .
 One alternative to an all-whitespace line is a line with just indentation
 and a period. Debian package description fields use this.
Foo: Wait, I already defined a value for this key. What happens now?
What happens now: It depends on whether the `multiple` option for the "Foo"
 field was set in the HeaderParser.
If multiple=True: The "Foo" key in the dictionary returned by
 HeaderParser.parse_string() would map to a list of all of Foo's values
If multiple=False: A ParserError is raised
If multiple=False but there's only one "Foo" anyway:
 The "Foo" key in the result dictionary would map to just a single string.
Compare this to: the standard library's `email` package, which accepts
 multi-occurrence fields, but *which* occurrence Message.__getitem__
 returns is unspecified!

Are we still in the header: no
 There was a blank line above, so we're now in the body, which isn't
 processed for headers.
Good thing, too, because this isn't a valid header line.

On the other hand, this is not a valid RFC 822-style document:

 An indented first line — without a "Name:" line before it!
A header line without a colon isn't good, either.
Does this make up for the above: no

Parser

	
class headerparser.HeaderParser(normalizer=None, body=None, **kwargs)

	A parser for RFC 822-style header sections. Define the fields the parser
should recognize with the add_field method, configure handling of
unrecognized fields with add_additional, and then parse input with
parse_file or parse_string.

	Parameters

	
	normalizer (callable) – By default, the parser will consider two field
names to be equal iff their lowercased forms are equal. This can be
overridden by setting normalizer to a custom callable that takes a
field name and returns a “normalized” name for use in equality testing.
The normalizer will also be used when looking up keys in the
NormalizedDict instances returned by the parser’s parse_*
methods.

	body (bool [https://docs.python.org/3/library/functions.html#bool]) – whether the parser should allow or forbid a body after
the header section; True [https://docs.python.org/3/library/constants.html#True] means a body is required, False [https://docs.python.org/3/library/constants.html#False] means a
body is prohibited, and None [https://docs.python.org/3/library/constants.html#None] (the default) means a body is optional

	kwargs – scanner options

	
add_additional(enable=True, **kwargs)

	Specify how the parser should handle fields in the input that were not
previously registered with add_field. By default, unknown fields
will cause the parse_* methods to raise an
UnknownFieldError, but calling this method with
enable=True (the default) will change the parser’s behavior so that
all unregistered fields are processed according to the options in
**kwargs. (If no options are specified, the additional values will
just be stored in the result dictionary.)

If this method is called more than once, only the settings from the
last call will be used.

Note that additional field values are always stored in the result
dictionary using their field name as the key, and two fields are
considered the same (for the purposes of multiple) iff their names
are the same after normalization. Customization of the dictionary key
and field name can only be done through add_field.

New in version 0.2.0: action argument added

	Parameters

	
	enable (bool [https://docs.python.org/3/library/functions.html#bool]) – whether the parser should accept input fields that
were not registered with add_field; setting this to False [https://docs.python.org/3/library/constants.html#False]
disables additional fields and restores the parser’s default
behavior

	multiple (bool [https://docs.python.org/3/library/functions.html#bool]) – If True [https://docs.python.org/3/library/constants.html#True], each additional header field will be
allowed to occur more than once in the input, and each field’s
values will be stored in a list. If False [https://docs.python.org/3/library/constants.html#False] (the default), a
DuplicateFieldError will be raised if an
additional field occurs more than once in the input.

	unfold (bool [https://docs.python.org/3/library/functions.html#bool]) – If True [https://docs.python.org/3/library/constants.html#True] (default False [https://docs.python.org/3/library/constants.html#False]), additional field
values will be “unfolded” (i.e., line breaks will be removed and
whitespace around line breaks will be converted to a single space)
before applying type

	type (callable) – a callable to apply to additional field values
before storing them in the result dictionary

	choices (iterable) – A sequence of values which additional fields
are allowed to have. If choices is defined, all additional
field values in the input must have one of the given values (after
applying type) or else an
InvalidChoiceError is raised.

	action (callable) – A callable to invoke whenever the field is
encountered in the input. The callable will be passed the current
dictionary of header fields, the field’s name, and the field’s
value (after processing with type and unfold and checking
against choices). The callable replaces the default behavior
of storing the field’s values in the result dictionary, and so the
callable must explicitly store the values if desired.

	Returns

	None [https://docs.python.org/3/library/constants.html#None]

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] –
	if enable is true and a previous call to add_field used a
custom dest

	if choices is an empty sequence

	
add_field(name, *altnames, **kwargs)

	Define a header field for the parser to parse. During parsing, if a
field is encountered whose name (modulo normalization) equals either
name or one of the altnames, the field’s value will be
processed according to the options in **kwargs. (If no options are
specified, the value will just be stored in the result dictionary.)

New in version 0.2.0: action argument added

	Parameters

	
	name (string) – the primary name for the field, used in error
messages and as the default value of dest

	altnames (strings) – field name synonyms

	dest – The key in the result dictionary in which the field’s
value(s) will be stored; defaults to name. When additional
headers are enabled (see add_additional), dest must equal
(after normalization) one of the field’s names.

	required (bool [https://docs.python.org/3/library/functions.html#bool]) – If True [https://docs.python.org/3/library/constants.html#True] (default False [https://docs.python.org/3/library/constants.html#False]), the parse_*
methods will raise a MissingFieldError if
the field is not present in the input

	default – The value to associate with the field if it is not
present in the input. If no default value is specified, the field
will be omitted from the result dictionary if it is not present in
the input. default cannot be set when the field is required.
type, unfold, and action will not be applied to the
default value, and the default value need not belong to
choices.

	multiple (bool [https://docs.python.org/3/library/functions.html#bool]) – If True [https://docs.python.org/3/library/constants.html#True], the header field will be allowed to
occur more than once in the input, and all of the field’s values
will be stored in a list. If False [https://docs.python.org/3/library/constants.html#False] (the default), a
DuplicateFieldError will be raised if the
field occurs more than once in the input.

	unfold (bool [https://docs.python.org/3/library/functions.html#bool]) – If True [https://docs.python.org/3/library/constants.html#True] (default False [https://docs.python.org/3/library/constants.html#False]), the field value will
be “unfolded” (i.e., line breaks will be removed and whitespace
around line breaks will be converted to a single space) before
applying type

	type (callable) – a callable to apply to the field value before
storing it in the result dictionary

	choices (iterable) – A sequence of values which the field is
allowed to have. If choices is defined, all occurrences of the
field in the input must have one of the given values (after
applying type) or else an
InvalidChoiceError is raised.

	action (callable) – A callable to invoke whenever the field is
encountered in the input. The callable will be passed the current
dictionary of header fields, the field’s name, and the field’s
value (after processing with type and unfold and checking
against choices). The callable replaces the default behavior
of storing the field’s values in the result dictionary, and so the
callable must explicitly store the values if desired. When
action is defined for a field, dest cannot be.

	Returns

	None [https://docs.python.org/3/library/constants.html#None]

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] –
	if another field with the same name or dest was already
defined

	if dest is not one of the field’s names and add_additional
is enabled

	if default is defined and required is true

	if choices is an empty sequence

	if both dest and action are defined

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – if name or one of the altnames is not a
string

	
parse_file(fp)

	Parse an RFC 822-style header field section (possibly followed by a
message body) from the contents of the given filehandle and return a
dictionary of the header fields (possibly with body attached)

	Parameters

	fp (file-like object) – the file to parse

	Return type

	NormalizedDict

	Raises

	
	ParserError – if the input fields do not conform to the field
definitions declared with add_field and add_additional

	ScannerError – if the header section is malformed

	
parse_lines(iterable)

	Parse an RFC 822-style header field section (possibly followed by a
message body) from the given sequence of lines and return a dictionary
of the header fields (possibly with body attached). Newlines will be
inserted where not already present in multiline header fields but will
not be inserted inside the body.

	Parameters

	iterable (iterable of strings) – a sequence of lines comprising the text to parse

	Return type

	NormalizedDict

	Raises

	
	ParserError – if the input fields do not conform to the field
definitions declared with add_field and add_additional

	ScannerError – if the header section is malformed

	
parse_stream(fields)

	Process a sequence of (name, value) pairs as returned by
scan_lines() and return a dictionary of header fields (possibly with
body attached). This is a low-level method that you will usually not
need to call.

	Parameters

	fields (iterable of pairs of strings) – a sequence of (name, value) pairs representing the
input fields

	Return type

	NormalizedDict

	Raises

	
	ParserError – if the input fields do not conform to the field
definitions declared with add_field and add_additional

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if the input contains more than one body pair

	
parse_string(s)

	Parse an RFC 822-style header field section (possibly followed by a
message body) from the given string and return a dictionary of the
header fields (possibly with body attached)

	Parameters

	s (string) – the text to parse

	Return type

	NormalizedDict

	Raises

	
	ParserError – if the input fields do not conform to the field
definitions declared with add_field and add_additional

	ScannerError – if the header section is malformed

Scanner

	
headerparser.scan_file(fp, **kwargs)

	Scan a file for RFC 822-style header fields and return a generator of
(name, value) pairs for each header field in the input, plus a (None,
body) pair representing the body (if any) after the header section.

See scan_lines() for more information on the exact behavior of the
scanner.

	Parameters

	
	fp – A file-like object than can be iterated over to produce lines to
pass to scan_lines(). Opening the file in universal newlines mode is
recommended.

	kwargs – scanner options

	Return type

	generator of pairs of strings

	Raises

	
	MalformedHeaderError – if an invalid header line, i.e., a line
without either a colon or leading whitespace, is encountered

	UnexpectedFoldingError – if a folded (indented) line that is not
preceded by a valid header line is encountered

	
headerparser.scan_lines(iterable, **kwargs)

	Scan an iterable of lines for RFC 822-style header fields and return a
generator of (name, value) pairs for each header field in the input,
plus a (None, body) pair representing the body (if any) after the
header section.

Each field value is a single string, the concatenation of one or more
lines, with leading whitespace on lines after the first preserved. The
ending of each line is converted to '\n' (added if there is no
ending), and the last line of the field value has its trailing line ending
(if any) removed.

Note

“Line ending” here means a CR, LF, or CR LF sequence at the end of one
of the lines in iterable. Unicode line separators, along with line
endings occurring in the middle of a line, are not treated as line
endings and are not trimmed or converted to \n.

All lines after the first blank line are concatenated & yielded as-is in a
(None, body) pair. (Note that body lines which do not end with a line
terminator will not have one appended.) If there is no empty line in
iterable, then no body pair is yielded. If the empty line is the last
line in iterable, the body will be the empty string. If the empty line
is the first line in iterable and the skip_leading_newlines
option is False [https://docs.python.org/3/library/constants.html#False] (the default), then all other lines will be treated as
part of the body and will not be scanned for header fields.

	Parameters

	
	iterable – an iterable of strings representing lines of input

	kwargs – scanner options

	Return type

	generator of pairs of strings

	Raises

	
	MalformedHeaderError – if an invalid header line, i.e., a line
without either a colon or leading whitespace, is encountered

	UnexpectedFoldingError – if a folded (indented) line that is not
preceded by a valid header line is encountered

	
headerparser.scan_string(s, **kwargs)

	Scan a string for RFC 822-style header fields and return a generator of
(name, value) pairs for each header field in the input, plus a (None,
body) pair representing the body (if any) after the header section.

See scan_lines() for more information on the exact behavior of the
scanner.

	Parameters

	
	s – a string which will be broken into lines on CR, LF, and CR LF
boundaries and passed to scan_lines()

	kwargs – scanner options

	Return type

	generator of pairs of strings

	Raises

	
	MalformedHeaderError – if an invalid header line, i.e., a line
without either a colon or leading whitespace, is encountered

	UnexpectedFoldingError – if a folded (indented) line that is not
preceded by a valid header line is encountered

Scanner Options

The following keyword arguments can be passed to HeaderParser and the scanner
functions in order to configure scanning behavior:

	separator_regex=r'[\t]*:[\t]*'

	A regex (as a str [https://docs.python.org/3/library/stdtypes.html#str] or compiled regex object) defining the name-value
separator. When the regex matches a line, everything before the matched
substring becomes the field name, and everything after becomes the first
line of the field value. Note that the regex must match any surrounding
whitespace in order for it to be trimmed from the key & value.

	skip_leading_newlines=False

	If True [https://docs.python.org/3/library/constants.html#True], blank lines at the beginning of the input will be discarded. If
False [https://docs.python.org/3/library/constants.html#False], a blank line at the beginning of the input marks the end of an
empty header section and the beginning of the message body.

New in version 0.3.0: separator_regex, skip_leading_newlines

Utilities

	
class headerparser.NormalizedDict(data=None, normalizer=None, body=None)

	A generalization of a case-insensitive dictionary. NormalizedDict takes
a callable (the “normalizer”) that is applied to any key passed to its
__getitem__ [https://docs.python.org/3/reference/datamodel.html#object.__getitem__], __setitem__ [https://docs.python.org/3/reference/datamodel.html#object.__setitem__], or __delitem__ [https://docs.python.org/3/reference/datamodel.html#object.__delitem__]
method, and the result of the call is then used for the actual lookup.
When iterating over a NormalizedDict, each key is returned as the
“pre-normalized” form passed to __setitem__ [https://docs.python.org/3/reference/datamodel.html#object.__setitem__] the last time the key
was set (but see normalized() below). Aside from this, NormalizedDict
behaves like a normal MutableMapping [https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping] class.

If a normalizer is not specified upon instantiation, a default will be used
that converts strings to lowercase and leaves everything else unchanged, so
NormalizedDict defaults to yet another case-insensitive dictionary.

Two NormalizedDict instances compare equal iff their normalizers, bodies,
and normalized_dict() return values are equal. When comparing a
NormalizedDict to any other type of mapping, the other mapping is first
converted to a NormalizedDict using the same normalizer.

	Parameters

	
	data (mapping) – a mapping or iterable of (key, value) pairs with
which to initialize the instance

	normalizer (callable) – A callable to apply to keys before looking them
up; defaults to lower. The callable MUST be idempotent (i.e.,
normalizer(x) must equal normalizer(normalizer(x)) for all
inputs) or else bad things will happen to your dictionary.

	body (string or None [https://docs.python.org/3/library/constants.html#None]) – initial value for the body attribute

	
body = None

	This is where HeaderParser stores the message body (if any)
accompanying the header section represented by the mapping

	
copy()

	Create a shallow copy of the mapping

	
normalized()

	Return a copy of the instance such that iterating over it will return
normalized keys instead of the keys passed to __setitem__ [https://docs.python.org/3/reference/datamodel.html#object.__setitem__]

>>> normdict = NormalizedDict()
>>> normdict['Foo'] = 23
>>> normdict['bar'] = 42
>>> sorted(normdict)
['Foo', 'bar']
>>> sorted(normdict.normalized())
['bar', 'foo']

	Return type

	NormalizedDict

	
normalized_dict()

	Convert to a dict [https://docs.python.org/3/library/stdtypes.html#dict] with all keys normalized. (A dict [https://docs.python.org/3/library/stdtypes.html#dict] with
non-normalized keys can be obtained with dict(normdict).)

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
headerparser.BOOL(s)

	Convert boolean-like strings to bool [https://docs.python.org/3/library/functions.html#bool] values. The strings 'yes',
'y', 'on', 'true', and '1' are converted to True [https://docs.python.org/3/library/constants.html#True], and the
strings 'no', 'n', 'off', 'false', and '0' are
converted to False [https://docs.python.org/3/library/constants.html#False]. The conversion is case-insensitive and ignores
leading & trailing whitespace. Any value that cannot be converted to a
bool [https://docs.python.org/3/library/functions.html#bool] results in a ValueError [https://docs.python.org/3/library/exceptions.html#ValueError].

	Parameters

	s (string) – a boolean-like string to convert to a bool [https://docs.python.org/3/library/functions.html#bool]

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if s is not one of the values listed above

	
headerparser.lower(s)

	
New in version 0.2.0.

Convert s to lowercase by calling its lower() [https://docs.python.org/3/library/stdtypes.html#str.lower] method if it
has one; otherwise, return s unchanged

	
headerparser.unfold(s)

	
New in version 0.2.0.

Remove folding whitespace from a string by converting line breaks (and any
whitespace adjacent to line breaks) to a single space and removing leading
& trailing whitespace.

>>> unfold('This is a \n folded string.\n')
'This is a folded string.'

	Parameters

	s (string) – a string to unfold

	Return type

	string

Exceptions

	
exception headerparser.errors.Error

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Superclass for all custom exceptions raised by the package

Parser Errors

	
exception headerparser.errors.ParserError

	Bases: headerparser.errors.Error, ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]

Superclass for all custom exceptions related to errors in parsing

	
exception headerparser.errors.BodyNotAllowedError

	Bases: headerparser.errors.ParserError

Raised when body=False and the parser encounters a message body

	
exception headerparser.errors.DuplicateFieldError(name)

	Bases: headerparser.errors.ParserError

Raised when a header field not marked as multiple occurs two or more times
in the input

	
name = None

	The name of the duplicated header field

	
exception headerparser.errors.FieldTypeError(name, value, exc_value)

	Bases: headerparser.errors.ParserError

Raised when a type callable raises an exception

	
exc_value = None

	The exception raised by the type callable

	
name = None

	The name of the header field for which the type callable was
called

	
value = None

	The value on which the type callable was called

	
exception headerparser.errors.InvalidChoiceError(name, value)

	Bases: headerparser.errors.ParserError

Raised when a header field is given a value that is not one of its allowed
choices

	
name = None

	The name of the header field

	
value = None

	The invalid value

	
exception headerparser.errors.MissingBodyError

	Bases: headerparser.errors.ParserError

Raised when body=True but there is no message body in the input

	
exception headerparser.errors.MissingFieldError(name)

	Bases: headerparser.errors.ParserError

Raised when a header field marked as required is not present in the input

	
name = None

	The name of the missing header field

	
exception headerparser.errors.UnknownFieldError(name)

	Bases: headerparser.errors.ParserError

Raised when an unknown header field is encountered and additional header
fields are not enabled

	
name = None

	The name of the unknown header field

Scanner Errors

	
exception headerparser.errors.ScannerError

	Bases: headerparser.errors.Error, ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]

Superclass for all custom exceptions related to errors in scanning

	
exception headerparser.errors.MalformedHeaderError(line)

	Bases: headerparser.errors.ScannerError

Raised when the scanner encounters an invalid header line, i.e., a line
without either a colon or leading whitespace

	
line = None

	The invalid header line

	
exception headerparser.errors.UnexpectedFoldingError(line)

	Bases: headerparser.errors.ScannerError

Raised when the scanner encounters a folded (indented) line that is not
preceded by a valid header line

	
line = None

	The line containing the unexpected folding (indentation)

 Python Module Index

 h

 		 	

 		
 h	

 	
 	
 headerparser	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | H
 | I
 | L
 | M
 | N
 | P
 | R
 | S
 | U
 | V

A

 	
 	add_additional() (headerparser.HeaderParser method)

 	
 	add_field() (headerparser.HeaderParser method)

B

 	
 	body (headerparser.NormalizedDict attribute)

 	
 	BodyNotAllowedError

 	BOOL() (in module headerparser)

C

 	
 	copy() (headerparser.NormalizedDict method)

D

 	
 	DuplicateFieldError

E

 	
 	Error

 	
 	exc_value (headerparser.errors.FieldTypeError attribute)

F

 	
 	FieldTypeError

H

 	
 	HeaderParser (class in headerparser)

 	
 	headerparser (module)

I

 	
 	InvalidChoiceError

L

 	
 	line (headerparser.errors.MalformedHeaderError attribute)

 	(headerparser.errors.UnexpectedFoldingError attribute)

 	
 	lower() (in module headerparser)

M

 	
 	MalformedHeaderError

 	
 	MissingBodyError

 	MissingFieldError

N

 	
 	name (headerparser.errors.DuplicateFieldError attribute)

 	(headerparser.errors.FieldTypeError attribute)

 	(headerparser.errors.InvalidChoiceError attribute)

 	(headerparser.errors.MissingFieldError attribute)

 	(headerparser.errors.UnknownFieldError attribute)

 	
 	normalized() (headerparser.NormalizedDict method)

 	normalized_dict() (headerparser.NormalizedDict method)

 	NormalizedDict (class in headerparser)

P

 	
 	parse_file() (headerparser.HeaderParser method)

 	parse_lines() (headerparser.HeaderParser method)

 	
 	parse_stream() (headerparser.HeaderParser method)

 	parse_string() (headerparser.HeaderParser method)

 	ParserError

R

 	
 	
 RFC

 	RFC 2822

 	RFC 5322

 	RFC 822, [1]

S

 	
 	scan_file() (in module headerparser)

 	scan_lines() (in module headerparser)

 	
 	scan_string() (in module headerparser)

 	ScannerError

U

 	
 	UnexpectedFoldingError

 	
 	unfold() (in module headerparser)

 	UnknownFieldError

V

 	
 	value (headerparser.errors.FieldTypeError attribute)

 	(headerparser.errors.InvalidChoiceError attribute)

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 headerparser — argparse for mail-style headers

 		
 Input Format

 		
 Parser

 		
 Scanner

 		
 Scanner Options

 		
 Utilities

 		
 Exceptions

 		
 Parser Errors

 		
 Scanner Errors

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

